The most common dose-volume parameters used in interstitial breast BT

Parameter	Definition / calculation
Implant related	
V _{PD}	absolute volume irradiated by the prescribed dose
V _{1.5xPD}	absolute volume irradiated by 1.5 x the prescribed dose
DNR - dose non-uniformity ratio	$V_{1.5xPD}$ / V_{PD}
DHI - dose homogeneity index	$(V_{PD} - V_{1.5xPD}) / V_{PD}$
Target related	
V _{PTV}	volume of the PTV
Vxx	percentage of PTV receiving xx% of the PD
OI - overdose volume index	V_{2xPD} / V_{PTV}
CI - coverage index	V100 / 100
COIN - conformal index	PTV _{PD} /V _{PTV} x PTV _{PD} /V _{PD}
Dxx	percentage dose that covers xx% of the PTV
OAR related	
D _{mean}	mean dose in organ
V_{xGy}	relative volume receiving x Gy
Vxx	percentage of organ receiving xx% of the PD
D _{xcm³}	relative dose given to most exposed x cm ³ of organ

Recommended dose - volume limits for implant and PTV

	Constraints
Implant	V _{PD} ≤ 300 cm³ DNR ≤ 0.35
PTV	$V100 \ge 90\%$ $V150 < 65 \text{ cm}^3$ $V200 < 15 \text{ cm}^3$ $COIN \ge 0.65$

Recommended dose - volume limits for OAR-s

Organ	Constraints
	(absolute values given in EQD2)
Ipsilateral non-target breast	V90 < 10%
	V50 < 40%
Skin*	$D_{1cm^3} < 90\% $ (37.5 Gy _{EQD2})
	D _{0.2cm³} < 100% (44.5 Gy _{EQD2})
Rib	$D_{0.1cm^3} < 90\% $ (37.5 Gy _{EQD2})
	$D_{1cm^3} < 80\% $ (31.5 Gy _{EQD2})
Heart**	MHD < 8% (1.7 Gy _{EQD2})
	$D_{0.1cm^3} < 50\% $ (15.5 Gy _{EQD2})
Ipsilateral lung	$MLD < 8\% (1.7 \text{ Gy}_{EQD2})$
	$D_{0.1cm^3} < 60\% (20.5 \text{ Gy}_{EQD2})$

^{*}skin volume is defined as a 5 mm shell below the body contour

^{**}left sided lesion only, MHD: mean heart dose, MLD: mean lung dose EQD2: radiobiologically equivalent dose given in 2 Gy fractions for α/β =3 Gy

Recommended parameters for recording

- 1. Type (**nuclide**) of the radioactive source and technique (HDR/PDR)
- 2. Number of catheters used and number of implanted planes
- Method of dose optimization (manual, geometric, graphical, inverse) and normalization (description of positions of the reference points)
- **4. Method of dose prescription** (on isodose line, volumetric), dose per fraction (pulse), total dose and fractionation scheme with time pattern
- **5.** Reference air kerma rate/source activity at the time of first fraction
- 6. Total reference air kerma (TRAK)
- 7. Implant related volume parameters: V_{PD} , DNR
- **8. Target related parameters**: V_{PTV}(cm³), V100, V150, V200, D90
- 9. Optional OARs related parameters:
 - 1. ipsilateral non-target breast: V90, V50
 - 2. skin: D_{0.2cm}3, D_{1cm}3
 - 3. rib: D_{0.1cm}3, D_{1cm}3
 - 4. heart: MHD (mean heart dose), D_{0.1cm³}
 - 5. ipsilateral lung: MLD (mean lung dose), D_{0.1cm³}
 - 6. contralateral breast: D_{1cm³}
 - 7. contralateral lung: D_{1cm³}

Quality management issues for HDR-/PDR BT

☐ Check of treatment plan (before export to control unit) - patient information (name, ID, DOB etc.) - dose prescription (fraction dose, fraction number) - correspondence of first source dwell position to distal catheter reconstruction point - correct outdrive length - a rough estimation of the calculated treatment time (recalculation with another system) □ Plan data transfer - check the data in the control unit after data transfer □ Connection of catheters with transfer tubes correct labelling/numbering of the catheters (photo is recommended) - exact internal lengths of the catheters if applicable - follow the pathway of transfer tubes from indexer to catheters one by one ☐ Final control before initiation of irradiation - total length (transfer tube + catheter) is recommended to be checked with source position simulator - test run with a check cable